
www.aelena.com / Restifying a WCF Service Página 1

Restifying a WCF Service

WCF is a complex beast and sometimes not very suited for a light weight RESTful http API. But

you could well have pre-existing WCF services that you might want to reuse and turn them

restful. We will have a simple WCF service here as a demo on the steps needed.

Let’s begin at the beginning and have a look at the service. We will not delve much on details

but just show the service here.

1 Creation of the demo WCF service

For the purposes of this tutorial we’re not going to decouple the parts of the WCF service

(where, if we had multiple services, we could put the interfaces together into one dll, services

implementations into another, etc…).

1.1 The interface

namespace RestfulWCF
{
 [ServiceContract]
 public interface IEmployeeService
 {

 [OperationContract]
 Employee Get (string value);

 }
}

1.2 The implementation

 public class EmployeeService : IEmployeeService
 {
 public Employee Get (string value)
 {
 return new Employee ()
 {
 ID = value,
 Name = "John Doe"
 };
 }

 }

www.aelena.com / Restifying a WCF Service Página 2

1.3 Dummy Business Class

And the dummy business class used in the sample (defined in a separate .dll) with the usual

attributes for exposing the type to serialization.

namespace BusinessObjects
{
 [DataContract]
 public class Employee
 {
 [DataMember]
 public string ID { get; set; }

 [DataMember]
 public string Name { get; set; }

 }
}

In order to use the [DataContract] and [DataMember] attributes you need to add a reference

to System.Runtime.Serialization in your business .dll project.

1.4 The Web.Config file

For the moment, we leave the web.config as created by the default configuration of the newly

created project, but we will have to make changes to adapt the service to a restful orientation.

We now have a working simple WCF project, let’s proceed to restify it.

www.aelena.com / Restifying a WCF Service Página 3

2 Restifying the WCF service

2.1 Add the WebGet attribute

Proceed to modify the web service interface as shown here:

 [ServiceContract]
 public interface IEmployeeService
 {

 [OperationContract]
 [WebGet(UriTemplate="/Employees/{value}")]
 Employee Get (string value);

 }

We have added the highlighted line to define an URI for the service. WebGet Is defined in the

System.ServiceModel.Web namespace. We press F5 and the have the service running.

The thing is that we can access the Employees URI that we defined in our interface previously

but still have a very ugly thing in the middle, the name of the service in the middle of the URL

makes this service not very restful, the ideal URL we’re trying to get is obviously

http://server/Employees/1234, with nothing else in between. Enter routing.

2.2 Adding routing

The first thing we need to have routing is to add a global.asax file to our project, if we did

not have one (as in this case).

http://server/Employees/1234

www.aelena.com / Restifying a WCF Service Página 4

Add also a reference to System.ServiceModel.Activation in your project, because we will

need to use that to configure routing.

Now, modify the Application_Start like so, adding one route for our new service (make sure

to use the implementation, EmployeeService, not the interface, IEmployeeService, when

defining the service type):

 protected void Application_Start (object sender, EventArgs e)
 {

 RouteTable.Routes.Add ("employeeRoute",
 new ServiceRoute ("employees",
 new WebServiceHostFactory (),
 typeof (EmployeeService)));

 }

Press F5 to test your brand new routed service, but bang! we find this exception:

So we need to modify our service implementation accordingly.

 [AspNetCompatibilityRequirements(
 RequirementsMode=AspNetCompatibilityRequirementsMode.Required)]
 public class EmployeeService : IEmployeeService
 {

 public Employee Get (string value)
 {
 return new Employee ()
 {
 ID = value,
 Name = "John Doe"
 };
 }

 }

www.aelena.com / Restifying a WCF Service Página 5

This attribute is also to be found in the library that we added a reference to earlier
(System.ServiceModel.Activation). You will need to modify your web.config accordingly,
by modifyin the <system.webServer> section in order to support routing:

<system.webServer>
 <modules runAllManagedModulesForAllRequests="true">
 <add name="UrlRoutingModule"
 type="System.Web.Routing.UrlRoutingModule, System.Web, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a" />
 </modules>
 <handlers>
 <add name="UrlRoutingHandler" preCondition="integratedMode" verb="*"
path="UrlRouting.axd"/>
 </handlers>
 <directoryBrowse enabled="true"/>
 </system.webServer>

And also make sure your serviceHostingEnvironment contains also the

aspNetCompatibilityEnabled attribute:

<serviceHostingEnvironment multipleSiteBindingsEnabled = "true"
 aspNetCompatibilityEnabled = "true"/>

We press F5 again to view our newly restified WCF, but oh! something is still wrong

The real URL where the service is listening is actually

http://localhost:9116/Employees/Employees/12341, but why?

www.aelena.com / Restifying a WCF Service Página 6

The reason is that we have defined “employees” as part of the URL twice, both in the attribute

of the service and on the routing defined in the Global.asax file.

Note: the name “employeeRoute” is irrelevant, as it is just an optional identifier for this entry

in the routing table. The Important thing is that we defined these double, so to say, url

fragment. So we will make some changes to that.

We can obviously remove one of them, and get the URL that we wanted. Either this

Or this

will work to get this URL

www.aelena.com / Restifying a WCF Service Página 7

Which is what we intended to have from the very beginning. However this URL is only good if

we’re dealing with only one service that is not part of a wider set of services.

And even in that case, a web service being a public facing API, you should seriously consider

leveraging this configuration mechanism to introduce versioning.

2.3 Adding Versioning

So, instead of eliminating one of the two URL fragments that we had before (called

“employees”), we could actually use one of them to introduce versioning in the URL, so we can

release newer versions of our service without breaking preexisting clients.

So, for example we could configure our Routing mechanism in the Global.asax file like this

(leave the “employees” part in the configuration of the WebGet attribute in the interface

definition)

 RouteTable.Routes.Add ("employeeRoute",
 new ServiceRoute ("api/v1",
 new WebServiceHostFactory (),
 typeof (EmployeeService)));

So, we now have this URL

www.aelena.com / Restifying a WCF Service Página 8

Note on versioning: there are several ways to include versioning in our APIs, such as adding a

timestamp, an extra parameter in the querystring or including one in the URL, as in this

example. In general, it is recommended to use this one as it is easier to type and it is less

obstrusive than the following examples:

 /server/2012-01-01/employees

 /server/employees?v=1.0

In general it is also recommended to use literals such as v1, v2 etc, since having v1.0 or v1.2 in

the middle of the URL suggests too many changes and it feels somewhat awkward to have to

type this extra dot.

2.4 Enabling automatic help (optional step)

We can actually enable automatic help pages provided by the WCF infrastructure by setting

the helpEnabled attribute to true in the webHttp element of web.config file. This can be

helpful when trying to discover usage of the service interface. Update your web.config to

reflect this change:

 <endpointBehaviors>
 <behavior name="restfulBehaviour">
 <webHttp helpEnabled="true" />
 </behavior>
 </endpointBehaviors>

Now you can type the URL of your service ending the url with the word “help”, so you can get

this screen:

www.aelena.com / Restifying a WCF Service Página 9

www.aelena.com / Restifying a WCF Service Página 10

3 What about Json?

So far, we’ve seen that all the examples show the data in xml, but xml is verbose and has fallen

a bit out of favour in modern APIs, and all the smart people prefer json.

Fortunately, it’s just a matter of changing a bit our WebGet attribute, in the service interface

definition:

 [OperationContract]
 [WebGet (UriTemplate = "/Employees/{value}",
 ResponseFormat=WebMessageFormat.Json)]
 Employee Get (string value);

If we open Chrome now and call the service, we will see the json on screen:

IE behaves a bit different, and prompts us to download the file. Seems it does not know what

to do exactly with it.

But the modification was indeed easy.

Note: to convince IE to show json on screen, there are several options here.

http://stackoverflow.com/questions/2483771/how-can-i-convince-ie-to-simply-display-application-json-rather-than-offer-to-do

www.aelena.com / Restifying a WCF Service Página 11

4 Modifying the restified service

The service is very simple, so let’s say that we need now to keep a list of projects for each

Employee, so let’s just pretend we’re getting those from the database, but first let’s create a

Project class and add a list of these to our Employee class.

 [DataContract]
 public class Project
 {
 [DataMember]
 public string ProjectID { get; set; }

 [DataMember]
 public string ProjectName { get; set; }

 [DataMember]
 public bool IsTopSecret { get; private set; }

 public Project (string name, string id, bool isTopSecret)
 {
 this.ProjectName = name;
 this.ProjectID = id;
 this.IsTopSecret = isTopSecret;
 }

}

and

 [DataContract]
 public class Employee
 {
 [DataMember]
 public string ID { get; set; }

 [DataMember]
 public string Name { get; set; }

 [DataMember]
 public List<Project> Projects { get; set; }

}

www.aelena.com / Restifying a WCF Service Página 12

Obviously if we just modify the Get method of our interface this works without a hitch

 public Employee Get (string value)
 {
 return new Employee ()
 {
 ID = value,
 Name = "John Doe",
 Projects = new List<Project> () {
 new Project ("Decoding Alien Programming Languages",
 "883", true),
 new Project ("The Ultimate 10-string guitar",
 "991", false) }
 };

 }

We just get a json string that’s a bit more complex

But what we really want is to be able to read the projects of a given with an URL such as

employees/1234/projects, meaning get me the projects for employee 1234, so let’s change

the service a bit to accommodate this.

4.1 Modify the service interface

First we add a new method in the definition of our service interface, with the URL we want in

the WebGet attribute.

 [OperationContract]
 [WebGet (UriTemplate = "/Employees/{value}/Projects",
 ResponseFormat = WebMessageFormat.Json)]
 List<Project> GetEmployeeProjects (string value);

And implement it accordingly

www.aelena.com / Restifying a WCF Service Página 13

 public List<Project> GetEmployeeProjects (string value)
 {
 return new List<Project> () {
 new Project ("Decoding Alien Programming Languages",
 "883", true),
 new Project ("The Ultimate 10-string guitar",
 "991", false) };
 }

Simple as that, now we can have the url that we wanted.

